GDPNet: Refining Latent Multi-View Graph for Relation Extraction

نویسندگان

چکیده

Relation Extraction (RE) is to predict the relation type of two entities that are mentioned in a piece text, e.g., sentence or dialogue. When given text long, it challenging identify indicative words for prediction. Recent advances on RE task from BERT-based sequence modeling and graph-based relationships among tokens sequence. In this paper, we propose construct latent multi-view graph capture various possible tokens. We then refine select important Finally, representation refined concatenated extraction. Specifically, our proposed GDPNet (Gaussian Dynamic Time Warping Pooling Net), utilize Gaussian Graph Generator (GGG) generate edges graph. The by (DTWPool). On DialogRE TACRED, show achieves best performance dialogue-level RE, comparable with state-of-the-arts sentence-level RE.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view Bootstrapping for Relation Extraction by Exploring Web Features and Linguistic Features

Binary semantic relation extraction from Wikipedia is particularly useful for various NLP and Web applications. Currently frequent pattern miningbased methods and syntactic analysis-based methods are two types of leading methods for semantic relation extraction task. With a novel view on integrating syntactic analysis on Wikipedia text with redundancy information from the Web, we propose a mult...

متن کامل

Latent Multi-group Membership Graph Model

We develop the Latent Multi-group Membership Graph (LMMG) model, a model of networks with rich node feature structure. In the LMMG model, each node belongs to multiple groups and each latent group models the occurrence of links as well as the node feature structure. The LMMG can be used to summarize the network structure, to predict links between the nodes, and to predict missing features of a ...

متن کامل

Multi-instance Multi-label Learning for Relation Extraction

Distant supervision for relation extraction (RE) – gathering training data by aligning a database of facts with text – is an efficient approach to scale RE to thousands of different relations. However, this introduces a challenging learning scenario where the relation expressed by a pair of entities found in a sentence is unknown. For example, a sentence containing Balzac and France may express...

متن کامل

Shared Subspace Learning for Latent Representation of Multi-View Data

The pervasive existence of multi-view data has made conventional single view data analysis methods to confront with great challenge. To exploit new analysis technique for multi-view data has become one of active topics in the field of machine learning. From the point of shared subspace learning, this paper focuses on capturing the shared latent representation across multi-view by constructing t...

متن کامل

Semi-Supervised Convolution Graph Kernels for Relation Extraction

Extracting semantic relations between entities is an important step towards automatic text understanding. In this paper, we propose a novel Semi-supervised Convolution Graph Kernel (SCGK) method for semantic Relation Extraction (RE) from natural English text. By encoding sentences as dependency graphs of words, SCGK computes kernels (similarities) between sentences using a convolution strategy,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2021

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v35i16.17670